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Abstract—Federated learning-based automotive navigation has
recently received considerable attention, as it can potentially
address the issue of weak global positioning system (GPS) signals
under severe blockages, such as in downtowns and tunnels.
Specifically, the data-driven navigation framework combines
the position estimation offered by the high-sampling inertial
measurement units (IMUs) and the position calibration provided
by the low-sampling GPS signals. Despite its promise, the privacy
preservation and flexibility of the participating users in the
federated learning process are still problematic. To address these
challenges, in this paper, we propose an efficient, flexible, and
privacy-preserving model aggregation scheme under a federated
learning-based navigation framework named FedLoc. Specifically,
our proposed scheme efficiently protects the locally trained model
updates, flexibly supports the fluctuation of participants, and
is robust against unregistered malicious users by exploiting a
homomorphic threshold cryptosystem, together with the bounded
Laplace mechanism and the skip list. We perform a detailed
security analysis to demonstrate the security properties in terms
of privacy preservation and dishonest user detection. In addition,
we evaluate and compare the computational efficiency with two
traditional schemes, and the simulation results show that our
scheme greatly improves the computational efficiency during
participant fluctuation. To validate the effectiveness of our
scheme, we also show that only part of the model update is
excluded from aggregation in the case of a dishonest user.

Index Terms—Federated Learning, Privacy Preservation, Ve-
hicular Fog, Vehicular IoT

I. INTRODUCTION

The vehicular IoT has enabled better travel safety and on-
board experience, which leads us toward a future of intelligent
and autonomous transportation. Typical applications include
predictive automotive maintenance [1], vehicle telematics [2],
driver assistance, and autonomous vehicles [3]. Specifically,
an accurate and reliable navigation model is built with the
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data collected by the high-sampling inertial measurement units
(IMUs) in [4], which addresses the signal outage problem in a
global navigation satellite system (GNSS). However, location-
dependent vehicular IoT data are dispersively collected and
maintained, and it could be difficult to centralize and man-
age them from the perspective of positions. To address this
challenge, first, the vehicular fog architecture is proposed
to push intelligence toward the network edge [5], in which
the upgraded roadside units (RSUs) or cellular base stations
act as fog nodes and make area-level decisions [6]. In this
context, regional navigation models can be built distributively
and operated with the collaboration of fog nodes and users.
Second, the federated learning technique is also applied in
data-driven navigation [4], which exploits the data gathered
by mobile users and their onboard computation capabilities.
However, to reach the full potential of vehicular IoT-driven
navigation, several challenges remain to be addressed.

The foremost challenge is privacy preservation. Even though
federated learning is intuitively viewed as a secure training
method without centralizing raw data, studies have shown
that model hyperparameters may still cause data leakage [7].
Secure aggregation mechanisms were proposed in [7], [8],
which derive the aggregation results without the disclosure of
each user’s model hyperparameter. To achieve secure model
aggregation, Bonawitz et al. [8] proposed a privacy-preserving
scheme with the secure multiparty computation technique.
However, the proposed scheme requires the transmission of
public keys and the execution of mutual key agreements
among all the users, which may not be applicable in the vehic-
ular IoT scenario with intermittent connections. For example,
when the vehicle-to-infrastructure (V2I) transmission during
high-mobility handover is unstable, or when the vehicle-to-
vehicle (V2V) transmission is out-of-coverage. Furthermore,
the differential privacy technique has been integrated into
secure aggregation schemes [9], [10]. Chase et al. [9] com-
bined differential privacy with secure multiparty computation,
where the differential privacy technique handles the privacy
protection of the stochastic gradient descents, and the secure
multiparty computation technique addresses the issue of col-
laboration. In addition, Truex et al. [11] further combined
homomorphic encryption, secret sharing, and differential pri-
vacy to develop a protocol to balance privacy protection and
model accuracy. As the scale of a model hyperparameter
is immense, the intensive exploitation of computationally
demanding homomorphic cryptographic operations may bring
heavy computational complexity. Therefore, it is necessary to
design an efficient and privacy-preserving model aggregation
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scheme for federated learning-based vehicle navigation in
vehicular fog.

The second challenge is the flexibility of participants. The
users in vehicular IoT-based federated learning have only
intermittent network connections and limited power supply,
and mobile users may not be able to persist in the itera-
tive training process from beginning to end. Although the
secure aggregation schemes proposed in [8], [10] support user
dropout, they fail to allow the participation of newcomers,
which wastes the scarce sensory data collected by the newly
arrived users. Moreover, once the user dropout occurs, the key
reconstruction process may affect all users. However, changes
in participants are frequent in vehicular fog. If a change to one
participant causes the key reconstruction of all participants,
heavy computation and communication overheads could be
incurred. Therefore, there is also a need for an efficient
and flexible model aggregation mechanism that supports user
joining and leaving and is robust to dishonest users.

In this paper, to address these challenges, we propose a new
flexible privacy-preserving model aggregation scheme under a
federated learning-based navigation application in vehicular
fog. The proposed scheme is characterized by supporting
the flexible joining and leaving of participants and balancing
the trade-off between computational complexity and privacy
protection. Specifically, the contributions of this paper are
threefold, as follows.
• First, we propose an efficient and privacy-preserving

model aggregation scheme for federated learning-based navi-
gation in vehicular fog, which balances the trade-off between
computational complexity and privacy protection. Specifically,
the proposed mechanism innovatively exploits a homomorphic
threshold cryptosystem for key establishments and updates.
It also utilizes the bounded Laplace mechanism [12] for the
protection of model hyperparameters.
• Second, we provide a detailed analysis to show that our

proposed scheme supports the flexible joining and leaving of
participants. To be more specific, our scheme innovatively
exploits a skip list for group division, and only the group
members are required for a new round of key establishment
during the participant fluctuation. The proposed scheme is
robust to dishonest users through the authentication of the key
aggregation result, and only the model hyperparameters in the
detected group are excluded from model aggregation in the
case of a dishonest user.
• Third, we demonstrate the security properties of our

scheme in terms of privacy preservation and robustness to
dishonest users. We show the effectiveness of the proposed
scheme in the context of supporting dynamic user join-
ing/leaving and then compare our scheme with two traditional
schemes. We illustrate the robustness of the scheme against
dishonest users and evaluate the trade-off between the privacy
level and computational complexity.

The remainder of this paper is organized as follows. We
introduce our system model, present our security requirements,
and describe our design goals in Section II. In Section III, we
present our efficient, flexible, and privacy-preserving model
aggregation scheme for federated learning-based navigation.
The security analysis and performance evaluations are per-

formed in Section IV and Section V, respectively. Related
work is described in Section VI. Finally, we conclude the paper
in Section VII.

II. SYSTEM MODEL, SECURITY REQUIREMENTS, AND
DESIGN GOALS

In this section, we describe the system model and identify
the security requirements with the design goals.

A. System Model

We exploit the federated learning-based vehicle navigation
framework FedLoc proposed in [4] as the basis of the system
model under consideration (shown in Fig. 1). Specifically, the
system utilizes the vehicular IoT data collected from IMU
and global positioning system (GPS) to construct a neural
network (NN)-based navigation model. Our scheme focuses
on the interaction between a fog server and a group of users.
Specifically, the proposed system has three types of entities:
• Model Owner. The model owner connects to multiple

fog servers, and each fog server keeps a regional model
for localized navigation. During the training initialization
phase, the model owner identifies the spatial-temporal
requirement of the learning task. Then, it delegates the
training task to the covering fog server. The model owner
transmits the model to be updated M (0) to the fog server,
and it remains offline. At the end of the training process,
the model owner receives the updated model M (T ) from
the fog server.

• Fog server. The fog server, such as an upgraded RSU or a
cellular base station positioned near the network edge, is
responsible for updating a regional automotive navigation
model via T training iterations. At the beginning of
iteration t, the fog server broadcasts the model M (t−1),
as shown in Fig. 1. At the end of training iteration t,
the fog server aggregates all model hyperparameters and
derives M (t).

• Users. Each user (in the form of either a smartphone
or vehicle) gathers IMU and GPS data and keeps the
collected data in its local storage. For the navigation
model, the input data x are derived from three types
of IMU motion sensors—a linear acceleration sensor,
rotation vector sensor, and gyroscope sensor—while the
data ŷ collected from the GPS unit—the velocity and
yaw angle—are exploited to calibrate the estimated or
predicted output. At iteration t, a user with identity xi
computes the local model update M (t)

i using stochastic
gradient descent on its local dataset with an NN.

Communication Model. The connections between the users
and fog server are realized through the IEEE 802.11p Wireless
Access for Vehicular Environment (WAVE) standard (a short-
to medium-range communication technology operating at the
5.9 GHz band) [13]. The connection between the fog server
and the model owner occurs through secure wired links with
high bandwidth and low transmission delay, and it is assumed
to be securely protected by the HTTPS protocol [14].
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Fig. 1. Proposed federated learning-based navigation framework

B. Security Requirement

In the security model, we consider the fog server to be
honest-but-curious; i.e., it will follow the defined protocol but
is curious about each user’s model hyperparameter. In our
proposed scheme, we assume that all users register to the
trusted authority (TA). However, only some users will register
to the model owner, and some dishonest unregistered users will
attempt to join and corrupt the learning process. Furthermore,
we assume there is no collusion between any two entities, and
all the registered users will honestly participate in the learning
process. Specifically, the proposed scheme should satisfy the
security requirements of privacy preservation and dishonest
user detection.

• Privacy Preservation. During each training iteration, the
fog server should not learn the content of each model
hyperparameter. Meanwhile, each model hyperparameter
should be hidden within at least a predefined threshold
number of users.

• Dishonest User Detection. Users who are unregistered to
the model owner but intend to join in the learning process
are taken as dishonest users, who may present fake
secret shares (in terms of random integers) to corrupt the
learning process. The fog server should be able to detect
cheaters and exclude them from the learning process.

C. Design Goals

With the above system model and security requirements,
the goal is to design a privacy-preserving and flexible model
aggregation scheme for federated learning-based navigation in
vehicular fog.

The proposed scheme should meet the above security re-
quirements. If the proposed scheme does not satisfy the
security requirements, the privacy of the involved users may
be violated, the users may not be willing to participate in the
learning process, and the regional navigation models may not
be correctly constructed.

The proposed scheme should achieve the goal of flexibility.
As the federated learning framework supports the flexible

joining and leaving of participants, the proposed privacy-
preserving model aggregation mechanism should also be adap-
tive to this situation. Since unregistered dishonest users may
corrupt the training process, the proposed scheme should resist
such attacks.

The proposed scheme should achieve the trade-off between
privacy preservation and efficiency. Since the scale of an
NN is large, encrypting all model hyperparameters could
impose heavy cryptographic operations. To reduce the com-
putational complexity, we should evaluate the exploitation
of computationally heavy cryptographic operations. We also
should analyze the trade-off between privacy protection and
computational efficiency.

III. PROPOSED SCHEME

In this section, we propose a privacy-preserving model
aggregation scheme for federated learning-based navigation
in vehicular fog. Meanwhile, it supports participant fluctua-
tion and is robust to dishonest users. Also, a homomorphic
threshold cryptosystem based on the linear assumption [15],
the bounded Laplace mechanism [12], and the skip list struc-
ture [16] lays the foundation for the proposed scheme.

A. System Initialization

We assume that a trusted authority (TA)—i.e., a traffic man-
agement authority—will bootstrap the entire system. Given the
security parameter κ, the TA generates the bilinear parameters
(p,G,GT , e, g), where |p| = κ, g ∈ G and e : G×G→ GT ;
for details of the bilinear pairing, refer to [17]. The TA selects
a random number sk = s ∈ Zp as the private key and com-
putes the system public key pk = gs. In addition, the TA pub-
lishes the system parameters: params = (p,G,GT , e, g, pk).
During the registration of a user with identity xi ∈ Zp, the
TA computes and securely transmits the identity-based secret
key ski = g

1
s+xi toward it.

During the initialization of a model owner with iden-
tity IDc, the owner selects w + 1 random secret num-
bers (α1, ..., αw−1, β, xr) ∈ Zw+1

p and then computes
(gxr , e(g, g)β·xr ). If user xi is allowed to register with model
owner IDc, the owner selects a new random number si ∈ Zp,
computes the secret share (si,1, si,2), and securely delivers
(si,1, si,2) to user xi, which is{

si,1 = g
∑w−1

j=1 αj ·(xi)
j+β+si ,

si,2 = e(gxr , gsi).
(1)

During the initialization of a fog server with identity idf , the
server selects two random numbers SKf = (u, v) ∈ Z2

p as
secret keys, and then it computes and announces the public
keys PKf = (g1 = g1/u, g2 = g1/v).

Remark 1: In our proposed scheme, all involved users
register with the TA, but only a portion of users register with
the model owner. Besides, we take a dishonest user as someone
not being registered with the model owner but responds to a
training task.
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B. Training Task Announcement

The model owner IDc identifies the spatial-temporal re-
quirement for vehicular IoT, and it delegates the training task
to a nearby fog server idf . The fog server idf identifies a
time slot length Tr; i.e., users should respond to join the task
announced within time period Tr. Besides, the fog server idf
announces a training task to all users with the following steps.

Step 1: If a user satisfies the training requirement and
intends to join the task, it sends identity xi to the fog server idf
and waits for its response. After time period Tr, the fog server
idf assigns a response sequence i to user xi and formulates
a user set U = {(1, x1), (2, x2), ..., (n, xn)} with n users.
If it meets the requirement that n > w, the fog server idf
broadcasts the user set U .

Algorithm 1 Initialization
1: MaxLevel = 1; NumNode = 0;
2: for i = 1 to MaxLevel do
3: header → forward[i] = header;
4: end for

Algorithm 2 Update(list, NumNode, Threshold)
1: newLevel = list → level+1; list → level = newLevel;
2: local update[1,...,list → level]
3: y = (list → level = 1) → header; IntUser = 0;
4: for i = 1 to NumNode do
5: y = y → forward[1]; IntUser := IntUser+1;
6: if (IntUser mod Threshold == 1 and IntUser <=

NumNode-Threshold) or (IntUser == NumNode-
Threshold+1) then

7: z = (list → level = MaxLevel) → header
8: for i = list → MaxLevel downto 1 do
9: while z → forward[i] → key < y do

10: z = z → forward[i];
11: end while
12: update[i] = z;
13: y → forward[i] = update[i] → forward[i];
14: update[i] → forward[i] = y;
15: end for
16: end if
17: end for
18: v = (list → level = MaxLevel) → header;
19: IntGroup = 0;
20: for j = 1 to d nw e do
21: IntGroup := IntGroup +1;
22: v = v → forward[list → level = MaxLevel];
23: U [IntGroup] = ∅; int = 0;
24: while int < Threshold do
25: int:=int+1; v1 = v → forward[1];
26: U [IntGroup] = U [IntGroup] ∪ v1;
27: end while
28: end for

Step 2: The fog server and the user set U first synchronously
initialize a skip list with Alg. 1, and then they synchronously
add members to set U with the insert and update operations.
The update operation is shown in Alg. 2, and more details

about the insert and delete operations in a skip list can be
found in [16]. Fig. 2(a) shows an example of a skip list with
user set size |U| = 8 and threshold w = 3. If a new user (9, x9)
intends to join in the learning process, the joining process is
illustrated in Fig. 2(b). Fig. 2(c) shows what happens when
user (4, x4) leaves the training process.

Note that we exploit the skip list to improve the efficiency
during user joining and dropout. For example, when a new
user (9, x9) enters the training process, only the members in
Group u3 are affected, as shown in Fig 2(b). On the other
hand, when user (4, x4) leaves the training process (as shown
in Fig. 2(c)), only members in the newly formulated Group
u2 are affected. Thus, our scheme reduces the computational
complexity introduced by user joining and dropout.

C. Ciphertext Generation
After the group formulation process, we further discuss

the ciphertext generation process. Step 1: If user xi (for
example, user x2 in Fig. 2(a)) appears in only one group Uk
(group U1 in Fig. 2(a)), the user first chooses two random
numbers (ri, r

′

i) ∈ Zp and then selects two random values
(ki, k

′

i) ∈ {0, 1, ..., b M
wmax

c}, where wmax is the maximum
allowable number of users in the training process. User xi also
selects two random numbers (ti,1, ti,2) ∈ Z2

p and generates the
ciphertext as follows:

ci,1 = g1
ti,1 ,

ci,2 = g2
ti,2 ,

ci,3 = si,1 · gri/Ai · g−(ti,1+ti,2)/Ai ,

ci,4 = (si,2)
Ai · e(gxr , gri) · e(g1, g2)ki ,

ci,5 = si,1 · gr
′
i/Ai · g−(ti,1+ti,2)/Ai ,

ci,6 = (si,2)
Ai · e(gxr , gr

′
i ) · e(g1, g2)k

′
i ,

(2)

where Ai =
∑
j∈Uk,j 6=i

−xj

xi−xj
mod p. If a user exists in two

groups (for example, id6 exists in group U2 and group U3), the
corresponding value Ai is derived as Ai =

∑
j∈Uk,j 6=i

−xj

xi−xj
+∑

l∈Uk+1,l 6=i
−xl

xi−xl
mod p. Note that our proposed scheme

utilizes the homomorphic threshold cryptosystem based on
the linear problem: to recover message a ∈ M , it suffices to
compute the discrete logarithm of e(g, g)a with base e(g, g)
since 0 ≤ a ≤ M , which takes only expected time O(

√
M)

using Pollard’s lambda method.
Step 2: User xi selects another random number r̂i ∈ Zp and

generates the signature pair (σi,1, σi,2), which isσi,1 = sk
k
′
i+r̂i
i = g

k
′
i+r̂i
xi+s ,

σi,2 = e(g, g1)
r̂i .

(3)

Step 3: For user xi, the e-th dimension of the model
hyperparameter M (t)

i is m(t)
i,e , and the ciphertext is

d
(t)
i,e = H(idf ||e||t||TS) · ki +m

(t)
i,e + η

(t)
i,e , (4)

where η
(t)
i,e denotes the noise extracted from the bounded

Laplace mechanism [12].
Step 4: User xi organizes all ciphertexts msg

(t)
i =

xi||t||ci,1||ci,2||ci,3||ci,4||ci,5||ci,6||σi,1||σi,2||d(t)i,1||...||d
(t)
i,l ,
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(a) Skip list initialization process

(b) User insertion process of user x9 with a skip list

(c) User deletion process of user x4 with a skip list

Fig. 2. Example of a skip list initially with 8 users and 3 groups

where l is the dimension of model M (t)
i . Then, user xi

securely sends msg(t)i to fog server idf .
Remark 2: The NN weights, which are commonly solved by

minimizing the least-squares cost, provide a point estimate for
a given dataset. To determine a proper value domain of the NN
weights for our problem—i.e., the value range of the bounded
Laplace mechanism—the bootstrap techniques in [18], [19]
can be utilized to construct a confidence interval; for example,
95%, depending on our requirements. Fortunately, numerical
evaluations of the two bounds can be performed offline without
time and power constraints.

D. Ciphertext Aggregation

After receiving all messages msgi, i ∈ U , the fog server
idf performs the following steps.

Step 1: Fog server idf aggregates the ciphertext
(ci,1, ci,2, ci,3, ci,4, ci,5, ci,6), i ∈ U as follows:

Ĉ1 =
∏
i∈U

ci,1 = g
∑

i∈U ti,1
1 ,

Ĉ2 =
∏
i∈U

ci,2 = g
∑

i∈U ti,2
2 ,

Ĉ3 =
∏
i∈U

(ci,3)
Ai =

∏
i∈U

sAi
i,1 · g

∑
i∈U ri−(ti,1+ti,2),

Ĉ4 =
∏
i∈U

ci,4 =
∏
i∈U

sAi
i,2 · e(g

xr , g)
∑

i∈U ri · e(g, g)
∑

i∈U ki ,

Ĉ5 =
∏
i∈U

(ci,5)
Ai =

∏
i∈U

sAi
i,1 · g

∑
i∈U r

′
i−(ti,1+ti,2),

Ĉ6 =
∏
i∈U

ci,6 =
∏
i∈U

sAi
i,2 · e(g

xr , g)
∑

i∈U r
′
i · e(g, g)

∑
i∈U k

′
i .

(5)

Step 2: Fog server idf derives the key aggregation result∑
i∈U ki with SKf = (u, v), which is

e(g, g)
∑

i∈U ki =
Ĉ4

e(Ĉ3 · (Ĉ1)u · (Ĉ2)v, gxr )
· e(gxr , gβ)m.

(6)
Correctness Analysis.

Ĉ4

e(Ĉ3 · (Ĉ1)u · (Ĉ2)v, gxr )
· e(gxr , gβ)m

=

∏
i∈U s

Ai
i,2 · e(gxr , g)

∑
i∈U ri · e(g, g)

∑
i∈U ki · e(gxr , gβ)m

e(
∏
i∈U s

Ai
i,1 · g

∑
i∈U ri−(ti,1+ti,2) · (Ĉ1)u · (Ĉ2)v, gxr )

=

∏
i∈U e(g

xr , gsi)Ai · e(g, g)
∑

i∈U ki · e(gxr , gβ)m

e(
∏
i∈U (g

∑w−1
j=1 αj ·(xi)j+β+si)Ai , gxr )

=

∏
i∈U e(g

xr , gsi)Ai · e(g, g)
∑

i∈U ki · (gxr , gβ)m∏
i∈U e(g

xr , gsi)Ai · (gxr , gβ)m

(7)

Then the fog server idf derives another key aggregation result∑
i∈U k

′

i, which is

e(g, g)
∑

i∈U k
′
i =

Ĉ6

e(Ĉ5 · (Ĉ1)u · (Ĉ2)v, gxr )
· e(gxr , gβ)m.

(8)
To detect dishonest users, fog server idf authenticates the
correctness of

∑
i∈U k

′

i as follows:

e(
∏
i∈U

σxi
i,1, g) · e(

∏
i∈U

σi,1, g
s)

?
= (

∏
i∈U

σi,2)
u · e(g, g)

∑
i∈U k

′
i .

(9)

Step 3: Fog server idf aggregates the ciphertexts and obtains
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the aggregation result as follows:

d̂(t)e =
∑
i∈U

H(idf ||e||t||TS) · ki +m
(t)
i,e + η

(t)
i,e . (10)

Fog server idf derives the model hyperparameter aggrega-
tion result in set U , which is

∑
i∈U m

(t)
i,e + η

(t)
i,e = d̂

(t)
e −∑

i∈U H(idf ||e||t||TS) · ki.

IV. SECURITY ANALYSIS

In this section, we discuss the security properties of the pro-
posed federated learning-based navigation scheme in vehicular
fog.
• The proposed model aggregation scheme is privacy pre-

serving. To construct a homomorphic threshold encryption
scheme, we combine the Shamir secret sharing scheme with a
homomorphic cryptosystem proposed in [15], where a secret
share uploaded by each user is protected by the homomorphic
cryptosystem proved to be secure under the linear decision
assumption. If we take the item sAi

i,1 · gri as a message gmi

of the ciphertext (ci,1, ci,2, ci,3) in Eq. (2) is a ciphertext
tuple of a homomorphic encryption cryptosystem based on
a linear problem [15]. Based on another ciphertext pair
(SAi
i,1 ·gri , ci,4) protected by the secret share (si,1, si,2), the fog

server cannot recover the individual key ki and the aggregated
key

∑
i∈U ki can only be recovered with at least w users.

Because the exploited homomorphic cryptosystem is shown to
be semantically secure under the linear assumption [17], the
aggregated ciphertext tuple (

∏
i∈U S

Ai
i,1 · g

∑
i∈U ri ,

∏
i∈U ci,4)

can be derived by the fog server with the secret key pair (u, v).
Besides, the fog server can only recover the aggregated key∑
i∈U ki, if it receives ciphertexts from more than w users.
Due to the large dimension of a model hyperparameter in

an NN, we decide to reuse the user key ki across multiple
dimensions and iterations, as shown in Eq. (10). If the fog
server derives both the upper and lower bounds of the message
space, the fog server can recover the user key ki, and this
probability will be further discussed in Section V-C. In case
ki is inferred, we also exploit the bounded Laplace mechanism
in [12] to protect m(t)

i,e , such that its real value cannot be
deduced even when m(t)

i,e + η
(t)
i,e is recovered.

• The proposed model aggregation scheme is secure against
dishonest users. The secret share (sj,1, sj,2) of the dishonest
user xj is just two randomly chosen integers. We assume
that user xj encrypts value k

′

j with (sj,1, sj,2), obtains the
ciphertext (cj,5, cj,6) and then generates the signature pair
(σj,1, σj,2) for k

′

j . Based on the ciphertext pair (cj,5, cj,6)
generated by a dishonest user xj , the fog server cannot
correctly recover the aggregation result

∑
i∈U k

′

i. Furthermore,
the recovered aggregation result cannot be correctly verified
via batch authentication, as shown in Eq. (10). The security
of the identity-based signature that we exploit is shown to
be secure under the strong Diffie-Hellman (SDH) assumption
in groups with a bilinear map [17], and the aggregation result∑
i∈U k

′

i cannot be correctly authenticated. Thus, the dishonest
user can be detected through authentication.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
scheme in vehicular fog. Note that the goal of our proposed
scheme is to provide a privacy-preserving and flexible feder-
ated learning-based model aggregation scheme. We focus on
showing the computational efficiency during user joining and
dropout, robustness against malicious users, and the trade-off
between privacy and complexity, which are highly relevant
to privacy preservation. We show the effectiveness of our
proposed scheme in terms of supporting the dynamic joining
and dropout of participants and securing against dishonest
users. We also investigate the trade-off between computational
complexity and privacy protection. Specifically, we conduct
experiments using a desktop with a dual-core processor In-
tel(R) Core(TM) i7-8700 CPU @ 3.20 GHz and 8.00 GB of
installed RAM on a Windows 10 Enterprise platform.

To evaluate the performance of our scheme, we first com-
pare it with another hybrid privacy-preserving federated learn-
ing model aggregation scheme, which was recently published
in [11], and denote it as traditional scheme 1. To ensure a fair
comparison with our proposed scheme, we make some changes
to [11]. First, we assume that traditional scheme 1 exploits
the same homomorphic threshold encryption mechanism for
protection. Second, instead of protecting model parameters
with the computationally demanding homomorphic encryp-
tion technique, the model hyperparameters of each user are
protected with a session key and the bounded Laplace mech-
anism. Similar to our proposed scheme, traditional scheme
1 generally follows the same ciphertext generation steps de-
fined in Section III-C. However, the main difference is that
there is no group division, and the value Ai that appears
in Eq. (2) contains all involved users in set U , which is
Ai =

∑
j∈U,j 6=i

−xj

xi−xj
mod p.

In traditional scheme 1, whenever a user joins or leaves the
training process, the entire session keys must be reconstructed.
Specifically, when there is a member change in the user
set U , user xi updates the value Ai in Eq. (2) for a new
value A

′

i =
∑
j∈U ′ ,j 6=i

−xj

xi−xj
mod p with the updated user

set U ′ . All members in set U ′ generate the corresponding
new ciphertext-tuples (ci,1, ci,2, ci,3, ci,4), i ∈ U

′
and send

the new ciphertexts toward the fog server. Furthermore, the
fog server aggregates all received ciphertexts to obtain the
aggregated value (Ĉ1, Ĉ2, Ĉ3, Ĉ4) and further recovers the
newly generated key aggregation result

∑
i∈U ′ ki.

We also compare our proposed scheme with another secure
model aggregation scheme, which follows protocol 4 proposed
in [8] and denotes it as traditional scheme 2. Specifically,
during the initialization phase, each user xi generates and
distributes its secret share βi (in our scheme, there is only
one secret share of the model owner β in Eq. 1), to all
the potential users. We omit the key agreement process and
retain only the process of secret sharing; refer to protocol 4
proposed in [8] for more details. For the key establishment
process, n pairs of ciphertexts (cti,1, c

t
i,2, c

t
i,3, c

t
i,4), i ∈ U

′
must

be generated, and the fog server aggregates all ciphertexts
for the value (Ĉt1, Ĉ

t
2, Ĉ

t
3, Ĉ

t
4). When a user joins/leaves the

training process, as there is no group division of the users,
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user xi also updates the value Ai in Eq. (2) into a new value
A
′

i =
∑
j∈U ′ ,j 6=i

−xj

xi−xj
mod p.

A. Flexibility of User Joining and Leaving

Similar to the setup for traffic density estimation in [20],
we assume that the fog server has a square coverage area
of 1 km2 and the traffic density varies from 100 to 2000
vehicles per hour. In addition, we set the length of each time
slot to ts = 1 h and the probability of responding registered
vehicles is 0.1. Thus, the vehicle scale ranges between 10
and 200. To determine the computational cost, we exploit the
Java Pairing-Based Cryptography Library (JPBC) for bilinear
parameters [21] and obtain the following computational costs:
a single exponentiation operation in G is Ce = 7.98 ms, an
exponentiation operation in GT is Ct = 0.57 ms, and a bilinear
pairing operation is Cp = 4.49 ms.

1) Computational Complexity Introduced by User Joining:
In our proposed scheme, when a new user enters the training
process, a new group with w users must be formulated. We
consider only the key establishment process. To generate a
ciphertext tuple (ci,1, ci,2, ci,3, ci,4) in Eq. (2), the introduced
computational cost for all users is w ∗ (4 ∗ Ce + 3 ∗ Ct) +
w ∗ (Ce + 2 ∗Ct). For ciphertext aggregation and decryption,
the introduced computational cost is (w + 2) ∗ Ce + Cp. For
traditional scheme 1, the introduced total computational cost
for user joining is n ∗ (4 ∗Ce + 3 ∗Ct) + (n+ 2) ∗Ce +Cp.
For traditional scheme 2, the introduced total computational
cost is n ∗ (4 ∗ Ce + (2 ∗ n + 1) ∗ Ct) + (n + 2) ∗ Ce + Cp.
Furthermore, the comparison among the three schemes during
the user joining process is shown in Fig. 3.

Fig. 3 shows the computational complexity of the user
joining process concerning the number of users when the
threshold is w = 5. Specifically, in our proposed scheme, the
computational complexity of our scheme O(w) increases to the
number of users contained in each divided group. For tradi-
tional scheme 1, the computational complexity O(n) increases
with increasing scale of participants. Traditional scheme 2’s
computational complexity O(n2) depends on the square of
the user scale. Thus, in the context of user joining, only the
users in the relevant group are influenced, which reduces the
computationally demanding operations in the system.

2) Computational Complexity Introduced by User Dropout:
In our proposed scheme, to reformulate a group after a user
leaves, the user needs only to consume a computational cost
of 4 ∗ Ce + 3 ∗ Cp to update (ci,1, ci,2, ci,3, ci,4). Unlike the
user joining process, which only involves the users at the end
of the skip list, the user leaving process may involve the group
reformulation of multiple user groups in the skip list. In our
proposed scheme, the expected computational complexity of
the user leaving process is ((4 ∗ Ce + 3 ∗ Cp) ∗ w + Ce ∗
w) ∗ (d nw e+ 1)/2 + 2 ∗Ce +Cp. In traditional scheme 1, the
corresponding computational complexity for a user leaving is
n ∗ (4 ∗ Ce + 3 ∗ Cp) + (n + 2) ∗ Ce + Cp. For traditional
scheme 2, the introduced total computational cost is n ∗ (4 ∗
Ce + (2 ∗ n+ 1) ∗ Ct) + (n+ 2) ∗ Ce + Cp.

Fig. 4 shows the computational complexity of the user
leaving process to the number of users when the threshold

is set to w = 5, and the evaluation results show that our pro-
posed scheme greatly reduces the computational complexity
introduced by leaving. During the user leaving process, the
computational complexity of our scheme O(w ∗ d nw e) mainly
depends on the number of users contained in each divided
group. For traditional scheme 1, the computational complexity
O(n) is related to the scale of the participants. Traditional
scheme 2’s computational complexity O(n2) depends on the
square of the user scale. Thus, in the context of user joins, only
the users in the relevant group are influenced in our scheme,
which reduces computationally demanding operations. There-
fore, in the context of a user leaving the training process, only
the users in the newly formulated group are affected, which
further reduces computationally demanding operations.

Fig. 3. Computational complexity comparison for user joining

Fig. 4. Computational complexity comparison for user leaving

B. Robustness Against Dishonest Users

In our proposed scheme, as the involved users are divided
into t = d nw e user groups, if there exists one dishonest user
in the model aggregation process, only the model updates
when one or no more than two user groups are avoided, and
the expected scale of the usable model updates is max(n −
(w∗t−nn ∗ 2 ∗ w + n−(w∗t−n)

n ∗ w), 0) = max(0, n
2−w2∗t
n ).

Fig. 5 compares the expected number of model updates to
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Fig. 5. Comparison of the expected number of updates

the number of users. The comparison results show that our
proposed scheme is robust to a dishonest user, while the
scheme without a skip list does not detect a dishonest user;
i.e., the expected number of remaining models is zero.

C. Trade-off Between Privacy Protection and Computational
Complexity

In our proposed scheme, we exploit Eq. (10) to protect
each model hyperparameter dimension. For user xi, if the
proposed scheme does not reuse ki, each piece of the model
parameter must be protected by Eq. (2). We exploit the
relationship between the scale of key reuse and the key
disclosure probability to measure the trade-off between privacy
protection and computational complexity. We denote the lower
and upper bounds of the value domain D as lb and ub. Using
the secret key ki in one dimension across multiple iterations
may lead to the disclosure of both ki + ub and ki + lb and
further violates the secret key ki. Thus, from the perspective of
one given parameter dimension, we calculate the probability
of disclosing key ki across multiple training iterations.

Fig. 6. Exact probability of key disclosure

We let y(t)i,j denote the noise-added parameter y(t)i,j = m
(t)
i,j +

σ
(t)
i,j , and the parameter m(t)

i,j can be treated as the constant

mi,j across some iterations. We use stochastic gradient de-
scent (SGD) to train the NN weights with a relatively small
learning rate, and the parameter updates evolve slowly with the
iterations [22]. The probability of generating y(t)i,j at iteration
t is

Pr(y
(t)
i,j ,mi,j) =

1
2bexp(−

|y(t)i,j−mi,j |
b )∑

x∈D
1
2bexp(−

|x−mi,j |
b )

. (11)

Given the output (y
(1)
i,j , y

(2)
i,j , ..., y

(t)
i,j ), the probability of dis-

closing both the upper bound ki + ub and the lower bound
ki + lb during the t training iterations is

Pr(Iteration = t) = 2 · C1
t−1 · Pr(lb,mi,j)

· Pr(ub,mi,j) · (1− Pr(ub,mi,j)− Pr(lb,mi,j))
t−2.

(12)

Since ki can also be shared among multiple parameter dimen-
sions during one iteration, the probability of disclosing both
ki+ ub and ki+ lb among a group of exactly s parameters is

Pr(Size = s) =
∑

k∈S−s

Pr(lb,m
(t)
i,k) · Pr(ub,m

(t)
i,s)

·
∏

j∈S−s,j 6=k

(1− Pr(ub,m(t)
i,j )− Pr(lb,m

(t)
i,j ))

+
∑

k∈S−s

Pr(ub,m
(t)
i,k) · Pr(lb,m

(t)
i,s)

·
∏

j∈S−s,j 6=k

(1− Pr(ub,m(t)
i,j )− Pr(lb,m

(t)
i,j )).

(13)

Fig. 6 shows the probability of key disclosure concerning
the increase in the scale of key reuse. We experiment with
the data collected from the smartphone sensor-based vehicular
navigation system in [4] and derive the value of the model
parameter for testing. Specifically, we build an NN with
a rectified linear unit (ReLU) activation function and SGD
algorithm for the model parameters, and we derive the upper
and lower bounds of the NN with a 95% confidence interval.
In our experiment, the level of differential privacy is set to
ε = 0.1, and the scale of key reuse ranges between 200 and
1000. The evaluation results in Fig. 6 show that when the key
is reused for multiple iterations and the parameter is set to
the average of all parameters, then the maximum probability
of key disclosure is 0.1106 when the key reuse scale is set
to 1000. When the key is reused among multiple dimensions
and the values of the parameters are chosen randomly, the
maximum probability of key disclosure is 0.1122 using the
same key reuse scale.

VI. RELATED WORKS

In this section, we first review the relevant privacy-
preserving model aggregation mechanisms in federated learn-
ing, and then we discuss some federated learning-based appli-
cations in the vehicular IoT.

A. Privacy-Preserving Secure Aggregation

In federated learning, users maintain private databases on
their own devices, and a shared global model is trained
under the coordination of a centralized server with the locally
processed ephemeral model updates received from users [23],
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[24]. As a model update may leak some knowledge about the
training samples, some privacy-preserving mechanisms were
designed in federated learning for model protection.

The first type of privacy-preserving mechanism in federated
learning is achieved through secure multiparty computation.
Bonawitz et al. [7] proposed a privacy-preserving model ag-
gregation scheme for federated learning that considers training
a deep NN with distributed gradient descent across user-
held training data on mobile devices. In this scheme, the
participating users perform mutual key establishments among
themselves, and then they collaborate to calculate an aggre-
gation result. Bonawitz et al. [8] proposed a more flexible
privacy-preserving aggregation scheme, which is adaptive to
varying federated learning scenarios. By combining a se-
cure aggregation protocol and secret sharing techniques, this
scheme further supports an arbitrary subset of user dropouts.
However, these schemes cannot guarantee the validity of the
aggregation result and require secret information exchanges
between two users. To solve this problem, Xu et al. [10]
recently designed a verifiable secure aggregation for the NN
training process, which achieves verification of the derived
aggregation result. However, the above schemes either do not
support user dropout or require all participants to become
involved in the key re-establishment process after user dropout.

The second type of hybrid privacy-preserving federated
learning mechanism combines differential privacy with secure
multiparty computation. Even though the schemes based on
secure multiparty computation guarantee the security of the
intermediate results, they cannot guarantee the security of
the final results, which may also leak an individual part of
the model update in the case of collusion. Chase et al. [9]
combined differential privacy, secure multiparty computation,
and secret sharing, which achieves the privacy-preserving
training of NNs in a collaborative way. Since the exploitation
of differential privacy may lead to poor model performance
when there are a large number of users, Truex et al. [11]
presented a scheme that balances the trade-off between privacy
disclosure vulnerability and model performance. In addition,
Hao et al. [25] brought the homomorphic BGV encryption
technique to a noninteractive federated learning scheme, which
can resist the collusion of multiple adversarial entities. Liu et
al. [26] combined homomorphic encryption with secret sharing
to propose a federated framework supporting forced aggre-
gation and to be robust against user dropout. Specifically,
this scheme resolves the accident user dropout problem with-
out abandoning the current training round. However, these
schemes consider only the user dropout situation and do not
support the joining of new users, which is highly possible
in the vehicular fog scenario with newcomers, and they also
waste scarce sensory data from the newcomers.

B. Federated Learning Applications Related to Vehicular Fog

In vehicular fog, users experience high mobility and suffer
from intermittent connectivity to each fog server. Lu et al. [27]
proposed a collaborative federated learning framework on the
edges for connected vehicles, which achieves both training
time reduction and prediction accuracy. Saputra et al. [28]

proposed a learning-based solution for energy demand pre-
diction, which realizes energy demand prediction for electric
energy networks. However, these schemes mainly focus on
formulating models for vehicular applications, and they do not
consider the security and privacy preservation of the model
updates. Zhao et al. [29] proposed another hybrid privacy-
preserving mechanism in the IoV, which integrates federated
learning with local differential privacy to strengthen the pri-
vacy of the model update provided by each vehicle. Lu et
al. [30] also proposed a privacy-preserving federated learning
mechanism to address the data leakage problem in vehicular
cyber-physical systems. It also develops a new random sub-
gossip updating scheme to achieve data privacy preservation.
However, vehicular systems are experiencing high mobility
and intermittent network connections, and it is common for
a user to drop out or join the learning process. The above
schemes either do not consider the issue of user dropout,
or one user dropout may lead to key re-establishment of all
participants, which brings heavy computational complexity to
the vehicular fog. Meanwhile, these schemes do not consider
the joining of newcomers, and they exploit the sensory data
to strengthen the learning process.

In contrast, our proposed privacy-preserving model aggre-
gation scheme innovatively exploits a skip list to divide users
into groups such that when a user joins or leaves the training
process, only the corresponding group members are affected.
Although the homomorphic threshold cryptosystem is compu-
tationally heavy, we use these complex operations only for
key establishments. Meanwhile, the model hyperparameters
are further protected by the differential privacy technique.
Note that the gist of the proposed privacy-preserving model
aggregation scheme is to protect the model updates that are
distributively generated by the users, which are equipped with
adequate computational power and network connectivity. In
this paper, we illustrate the mechanism in the vehicular fog
scenario, it can be applied to almost all data-driven fog use
cases as long as the basic computation and communication
requirements can be satisfied.

VII. CONCLUSION

In this paper, we proposed a privacy-preserving model
aggregation scheme for federated learning-based navigation in
vehicular fog. The proposed scheme achieves flexibility and
robustness, which supports the dynamic joining and leaving
of participants, and is robust against dishonest participants.
We performed a security analysis to demonstrate that our
proposed scheme satisfies the predefined security requirements
for privacy preservation and dishonest user detection. Besides,
we carried out extensive experiments and performance evalu-
ations. We showed performance improvements in supporting
user joining and leaving and addressing dishonest users. We
analyzed the trade-off between privacy protection and com-
putational complexity. In future work, we will consider the
implementation of our privacy-preserving model aggregation
scheme in a real field test and assess its performance.
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